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ABSTRACT

The virtual source method �VSM� has been proposed as a
practical approach to reduce distortions of seismic images
caused by shallow, heterogeneous overburden. VSM is de-
manding at the acquisition stage because it requires placing
downhole geophones below the most complex part of the
heterogeneous overburden. Where such acquisition is pos-
sible, however, it pays off later at the processing stage be-
cause it does not require knowledge of the velocity model
above the downhole receivers. This paper demonstrates that
VSM can be viewed as an application of the Kirchhoff-
Helmholtz integral �KHI� with an experimentally measured
Green’s function. Direct measurement of the Green’s func-
tion ensures the effectiveness of the method in highly het-
erogeneous subsurface conditions.

INTRODUCTION

Complexity of the near surface or overburden is a major compli-
ation in seismic imaging. Quite often this complexity is limited to
he upper part of the section, as in cases of heterogeneous near-
urface, basalt, and salt layers. The ability of existing imaging
ethods to eliminate distortions of the heterogeneous overburden

emains fundamentally limited because they cannot account for all
ropagation complications. Bakulin and Calvert �2004, 2006� have
roposed the virtual source method �VSM�, which can eliminate
istortions caused by overburden of any complexity. VSM is based
n placing downhole geophones below the most complex overbur-
en and directly measuring these propagation distortions �Figure
�. Schuster �2005� provides a simple kinematic explanation of
ow VSM and other interferometric techniques can eliminate over-
urden distortions. This paper goes beyond kinematic consider-
tions. First, we derive the basic equation of VSM from the
irchhoff-Helmholtz integral �KHI� for arbitrarily heterogeneous

coustic media. Then we speculate as to why VSM works so well,
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ven though many of its theoretical assumptions are not satisfied in
ractice.

THEORY

Here we show that VSM can be derived directly from the KHI
sing the reciprocity principle. Seismic inverse methods utilize the
bility of KHI to image subsurface structures by treating them as
ocations of secondary sources �diffractors� excited by a set of pri-

ary sources. Although the conditions for applying the KHI are
ot entirely met in practice, satisfactory imaging results are often
btained for reasons that are discussed below.

HI for heterogeneous acoustic media

Consider an acoustic field u�x,y,z,t� excited by a source at a
oint M0. Such a field satisfies the equation of motion,

�2u −
1

v2�x,y,z�
�2u

�t2 = − ��M − M0�w�t� , �1�

here propagation velocity v�x,y,z� is an arbitrary function of spa-
ial coordinates; w�t� is a causal source time function �w�t� = 0,
nd u�t� = 0, when t � 0�; and ��M�, where M = �x,y,z�, is a spa-
ial delta function. In the frequency domain, equation 1 takes the
orm

�2ũ +
�2

v2�x,y,z�
ũ = − ��M − M0�w̃��� , �2�

here ũ��� and w̃��� are the Fourier transforms of the functions u
nd w, respectively, and � is radial frequency. If the field ũ �or u�
nd its normal derivative are known everywhere on a closed sur-
ace � and volume V, then this field can be calculated at any inter-
al point M of the volume V inside � �Morse and Feshbach, 1953�:

ũ�M� = I��M� + IV�M� , �3�
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A14 Korneev and Bakulin
I��M� =
1

4�
�

�

�G�S,M�
�ũ

�n
�S� − ũ�S�

�G�S,M�
�n

�dS ,

�3a�

IV�M� = w̃����
V

��M − M0�G�v,M�dv . �3b�

Equation 3a represents the KHI, where integration is performed
long the surface �, while in equation 3b integration goes over the
olume V. Both equations 3a and 3b contain the causal Green’s
unction G, which satisfies equation 2 when w̃��� = 1. For outgo-
ng fields, which are caused by sources located inside � and satisfy
adiation conditions at infinity �Baker and Copson, 1950�, the KHI
oes not contribute to ũ�M� since

I��M� = 0. �4�

herefore, ũ�M� = IV�M� = w̃���G�M0,M�, representing fields
rom the source located at point M0 inside volume V. In this case,
he internal Green’s function G�M0,M� cannot be reconstructed
ormally from surface measurements of the fields ũ and �ũ/�n on
. In the next section, we prove that application of KHI to time-

eversed fields allows such reconstruction. Other KHI derivations
Baker and Copson, 1950� isolate the source points by surrounding
hem with additional surfaces and substitute volume integrals of
he type in equation 3b with the surface integrals of the type in
quation 3a. Both approaches are equivalent.

The KHI is a mathematical expression of Huygens’ principle,
tating that the wavefield at any point can be reconstructed using
adiation from secondary sources represented by displacements
monopoles� and displacement derivatives �dipoles� on the surface
. Equation 4 is a consequence of the Huygens-Fresnel principle

or a case when both source and observation points are inside sur-
ace � and “the effect inside produced by the action of all second-
ry sources on � is however null” �Baker and Copson, 1950�. The
umerical application of KHI �equation 3a� is the basis for most

igure 1. VSM is designed to image below complex overburden.
ince surface shots are used in this example, it is essential to place
orehole receivers in a well below the most distorting zone to di-
ectly measure the transmission response �Green’s function�. Time
eversal is used to redatum surface shots into locations of down-
ole receivers without knowledge of the velocity model between
hem �Bakulin and Calvert, 2004, 2006�. In redatumed downhole
ata, reflections from deeper targets are free from distortions
aused by complex overburden. Therefore, conventional methods
an be used to obtain high-fidelity seismic images from virtual
ource data.
eismic processing steps such as migration, tomography, and
avefield continuation. While Huygens’ principle is usually illus-

rated for forward propagation, in all applications it is actually used
or back propagation since we are interested in the wavefield at in-
ernal points.

erivation of the virtual source equation

Consider an array of identical sources Di,�i = 1,2, . . . ,I� com-
letely covering a surface � surrounding a heterogeneous volume
, with two buried receivers, A and B �Figure 2�. Assume that at
oth A and B the values of the displacements ũSA, ũSB generated by
monopole� sources on � are known and that all sources emit the
ame amplitude w̃���. Also assume that the values of the deriva-
ives �ũSA/�n, �ũSB/�n are known �these can be thought of as re-
ponses recorded when exciting dipole sources at the same surface
ocations�. We demonstrate how to compute the response �seismo-
ram� at B for the source at A from this data set without additional
nowledge of the velocity structure between the surface shots and
ownhole receivers.

Fields ũSA��� and ũSB��� can be expressed as

ũSA��� = w̃���G�S,A�

nd

ũSB��� = w̃���G�S,B� �5�

sing Green’s functions G�S,A� and G�S,B�. Time-reversal opera-
ion for wavefields means a change of sign for time variable t and,
orrespondingly, a complex conjugation of spectra in the frequen-
y domain. Time-reversed field G*�M,A� therefore satisfies the
quation

�2G*�M,A� +
�2

v2�x,y,z�
G*�M,A� = − ��M − A� , �6�

hich describes waves coming from infinity and collapsing on
oint A at t = 0 �Petrashen and Nakhamkin, 1973�. Equation 5
ives

G*�S,A� = ũSA
* ���/w̃*��� �7�

or points S on surface �.

igure 2. Generalized representation of the downhole seismic ex-
eriment used for the derivation. Volume V is surrounded by sur-
ace �. The sources may occupy either the entire surface �theory�
r a portion of it ��0�. Recording consists of two sets of measure-
ents from each source to points A and B.
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Theory of the virtual source method A15
If we take the time-reversed Green’s function G*�M,A� as the
avefield u in equations 3, 3a, and 3b, then we obtain the follow-

ng representation for G*�A,B� in the form

G*�A,B� = I��A,B� + G�A,B� , �8�

ith the KHI given by

I��A,B� =
1

4�
�

�
�G�S,B�

�G*�S,A�
�n

− G*�S,A�
�G�S,B�

�n
�dS , �9�

hich is a function of points A and B. The second term in equation
is a result of volume integration as in equation 3. Note that the

urface integral in equation 9 is nonzero because the time-reversed
eld G*�S,A� represents ingoing waves and does not satisfy the ra-
iation condition at infinity. Because of reciprocity, G*�S,A� =
*�A,S�, we need only to excite dipole and monopole sources at

urface points S and record at points A and B in order to obtain the
esponse

Ũ�A,B� = G�A,B� − G*�A,B�

= 2i Im G�A,B�

= − I��A,B� , �10�

here field Ũ�A,B� satisfies a homogeneous wave equation with-
ut a source term. From equation 10 we infer

Ũ�A,B� = − Ũ*�A,B� , �11�

hich means that corresponding to Ũ�A,B�, the time-domain field
AB�t� is antisymmetric:

UAB�t� = − UAB�− t� . �12�

ime-domain response gAB�t� of the function G�A,B� is causal,
hich, together with equations 10 and 12, leads to

gAB�t� = UAB�t� = − UAB�− t�, �t � 0� . �13�

From equation 13 it follows that the wave propagation process
escribed by equation 10 consists of acausal �t � 0� and causal
t � 0� parts. Acausal propagation goes in reverse time until at t
0 it collapses into the virtual source at point A. Then, for t � 0,

he propagation process starts again as if the source were fired at
= 0 and the source wavelet sign were inverted �equation 10�.
herefore, the field G�A,B� is generated by the back-propagating
eld G*�A,B�. The sign inversion in equations 11 and 12 is a result
f passing of the wavefield through a focal point A �Alexeev and
elchinsky, 1958�. Note that acausal and causal parts here carry

he same information, so one of them is redundant if the other one
s known. Therefore, the KHI in the form of equation 9 allows ex-
ct evaluation of the time-domain Green’s function gAB�t� between
oints A and B. This is illustrated on a synthetic data set by van
anen et al. �2005�. Wapenaar �2004� considers a similar problem
hen two points located at a free surface are illuminated by a set of
nknown buried sources.

Combining equations 5 and 7–9, we also obtain

Ũ�A,B� = −
1

4��w̃����2
�

�

�ũ�S,B�
�ũ*�S,A�

�n

− ũ*�S,A�
�ũ�S,B�

�n
�dS , �14�

xpressing response Ũ�A,B� directly via wavefields recorded at
oints A and B.
Equation 14 is the fundamental result of KHI application result-

ng in VSM. It states that if the source amplitudes are known, then
wo sets of records between the closed surface � and two arbitrary
oints allow evaluation of the Green’s function between these
oints as if one of them were the source and the other were the re-
eiver. Both the KHI and the reciprocity principle used to derive
ormula 14 are rigorously proven and use no restrictions on com-
lexity of the velocity function. When an actual recorded wavefield
equation 5� is used, then the computed response corresponds to
he source at A emitting zero-phase amplitude �w̃����2. Such a
ymmetrical wavelet might violate the causality assumption
round t = 0 when points A and B are so close to each other that
ausal and acausal parts have some �small� overlap. Such overlap
s expected to be insignificant in practical applications since it does
ot affect reflections from target horizons.

In the derivations above we assumed that fields in equation 5 re-
ult from recording times T that were long enough to ensure that all
ave energy which passed surface � was recorded and that inte-
ration is performed over the whole �. In practice, however, it is
ever the case that all the functions on the right-hand side of equa-
ion 3 �or equation 14� are known. Instead, practical applications
ely on simplifying assumptions and approximations, which are
iscussed in the next section.

WHY THE KHI WORKS FOR SEISMIC DATA

Applications of the KHI for seismic data processing and imag-
ng represents back propagation of the recorded �time-reversed�
avefields to image underground structures. These applications are

ompromised by three circumstances.
First, it is impossible, in principle, to record the field ũ over the

ntire closed surface �. In practice, we have only partial knowl-
dge about the values of ũ on � over some localized area �0, and
ewer than several percent of the total aperture �volume angle� is
overed by data. The rest of the field remains unknown and is arti-
cially assumed to have zero values. The effects caused by limited
pertures are thoroughly discussed by Petrashen and Nakhamkin
1973�.

Second, measuring the spatial derivatives of the field ũ is diffi-
ult and is not done in practice. Moreover, the integrand in the KHI
s nonzero only if neither the source nor the receiver points are lo-
ated on the earth’s free surface, which is realized only for cross-
ole surveys. Indeed, if the field ũ represents pressure, then it �and
he corresponding Green’s function� has zero values on a free sur-
ace, and both integrand components in equation 3a are equal to
ero. If ũ represents displacement, the normal derivatives in equa-
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A16 Korneev and Bakulin
ion 3a are zero, reflecting the free-surface boundary conditions.
Finally, the evaluation of Green’s function G requires detailed

nowledge of the velocity function v�x,y,z�, which one never has.
n fact, an essential purpose of seismic imaging is to obtain infor-
ation about unknown rock parameters. Therefore, in processing

lgorithms, only simplified velocity models are used for approxi-
ate evaluations of G. An especially difficult problem in this re-

pect is created by a highly heterogeneous and unknown overbur-
en zone. The existence of such zones causes serious distortions in
he traveling waves, even when the heterogeneity is located far
rom the target zone.

Despite these problems, a variety of seismic imaging algorithms
ased on the KHI perform reasonably well. This property can be
nderstood better after expressing the recorded field ũ and the
ropagating field G in exponential form,

ũ* = ũ0e−i��u

nd

G = G0ei��G, �15�

ith spatially varying amplitude functions ũ0, G0, and phase func-
ions �u,�G. The function �G has the dimension of time and for ho-

ogeneous media is equal to the traveltime of wave propagation
etween a point on � and a point B �Figure 2�. Likewise, for homo-
eneous media, �u describes the traveltime between A and the inte-
ration point on the surface �. For complex heterogeneous media,
u and �G generally have no specific physical meaning and repre-
ent contributions from all possible propagating waves. Next, note
hat the normal derivatives of functions 15 are approximately pro-
ortional to these functions, but with slowly varying factors. This
tatement reflects the fact that wavefields and their derivatives
ropagate with the same wavefronts. For example, it is trivial to
emonstrate that the corresponding phase shift between these two
elds is equal to half a period for any plane wave. This explains
hy in conventional practice the imaging function has a general

orm

ũ�M� = �
�0

W�S�GũdS = �
�0

W�S�G0ũ0ei���G−�u�dS ,

�16�

hich contains no spatial derivatives and is supplemented by a
eighting function W�S�. If M = M0, then ideally �u = �G and the

ntegrand in equation 16 is a smoothly varying function describing
onstructive interference so that the integration results in a nonzero
alue. At other points, the integrand oscillates and the integration
ives negligibly small values. For a sharp reconstructed image, it is
ritically important to eliminate oscillating factor ei���G−�u� in equa-
ion 16. Although �u is a measurement result and contains all
ropagating waves, the function �G is only approximately known in
ost practical applications because it depends on the medium

tructure and the accuracy of the forward-modeling solver. There-
ore, the accuracy of the estimation is the main factor that defines
eismic image quality. The weighting factors W�S� �which usually
escribe geometrical spreading corrections� bring only second-
rder improvements. These conclusions are supported by a number
f analytical and numeric studies of KHI-based imaging algo-
ithms �Vasil’yev, 1975; Timoshin, 1978�.

The best possible way to evaluate the Green’s function is
hrough direct measurement. In this case the complexity of the me-
ium becomes irrelevant. Time-reversal experiments �Fink and
rada, 2001� confirm that excellent focusing �via back-
ropagation� is possible even when late multiply scattered phases
f the transmitted field are used. The key is to have reverse-time
ropagation in exactly the same medium in which forward propa-
ation was recorded. Bakulin and Calvert �2004� use a similar con-
ept in their VSM, which is an application of equation 16 with the
reen’s function taken directly from field measurements.
Indeed, let us assume that the wavefield from an array of sources

i,�i = 1,2, . . . ,I� is recorded at two points A and B �Figure 2� and
he data include two sets of displacements uiA�t�,�0 � t � T� and
iB�t�,�0 � t � T� from all surface shots to receivers at A and B,
espectively. In the frequency domain, the recorded data are given
y

ũiA��� = w̃���GiA��� and ũiB��� = w̃���GiB��� ,

�17�

imilar to those from equations 5. Changing integration in equation
4 to summation and simplifying the integrand in the same manner
s in equation 16, we have

VS̃AB = �
i=1

I

WiũiA
* ���ũiB��� = �w̃����2�

i=1

I

WiGiA
* ���GiB��� ,

�18�

here the Green’s functions are the results of measurements. The
irtual source waveforms VS�t� thus have zero-phase spectra
w̃����2. Note that this computation does not require knowledge of
edium velocity. Assuming Wi = 1 in equation 18 and after revert-

ng to the time domain, we obtain

VSAB�t� = �
i=1

I

uiA�− t� � uiB�t� , �19�

here * denotes convolution. Equation 19 is analogous to equation
in Bakulin and Calvert �2004� and is the crosscorrelation of

races uiA�t� and uiB�t�. Therefore, VSM can be deduced directly
rom the KHI. The traveltime-based explanations of VSM
Schuster, 2005� apply only to simple models, while the consider-
tions above indicate that medium complexity is not a restricting
actor. Since the function �G is taken directly from recorded data, it
equires no interpretation in terms of separate wave arrivals and
an be the product of complex multiarrival interference.

The obtained results can be explained in terms of time reversal.
ndeed, to simulate the field recorded at the real source points

i,�i = 1,2, . . . ,I� from the virtual source at A, we use reciprocity
nd reverse time in the data set ũiA���. This allows the data from
ll the sources to be transformed to the same origin time at the
oint A, describing a back-propagation process in reverse time. In
ractice, however, because of the partial source coverage on � and
he simplified integrand in equation 18, the radiation pattern of the
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Theory of the virtual source method A17
irtual source will depend on the acquisition geometry, data com-
lexity, and choice of weighting coefficients Wi.
Note that while for limited apertures equation 14 is not true, the

unctions of form 18 also consist of causal and acausal parts. While
he causal parts represent waves propagating from point A to point
, for the acausal parts the direction of propagation is reversed as it

ollows equation 18, and

VS˜

AB��� = VS˜

BA
* ���, VSAB�t� = VSBA�− t� . �20�

f the virtual source data are computed at each receiver, then just
he causal parts of the records have to be considered and any addi-
ion of acausal parts brings no extra information. Figure 3 illus-
rates this point for a simple 1D model.

CONCLUSIONS

VSM can be regarded as an application of a modified Kirchhoff-
elmholtz integral to time-reversed data recorded in the subsur-

ace using a distant array of sources either at the surface or in a

igure 3. An explanation of the information content of causal and
causal responses obtained with approximate equation 19 and lim-
ted apertures: �a� 1D model with source S on the left, two receiv-
rs at A and B, and reflector at depth C; �b� impulse seismogram at
oint A with direct DA and reflected RA waves; �c� similar response
t point B; �d� response VSAB�t� = uSA�−t� * uSB�t� at B when the
irtual source is at A. Note that DADB �direct wave from A to B�
nd DARB �reflection from A to B� map into the causal part �t

0� because both DB and RB arrive later than DA. Analogously,
aves RARB �direct wave from B to A� and RADB �reflection from
to A� appear in the acausal part �t � 0� since events RB and DB

oth arrive earlier than RA; �e� response VSBA�t� = uSB�−t� *
SA�t� at A when virtual source is at B. Analogous considerations
emonstrate that the acausal part of VSAB�t� moves into the causal
art of VSBA�t� and vice versa, as predicted by equation 20. Note
hat while arrival times on virtual source traces are symmetric
tDADB

= tRARB
,tDARB

= tRADB
or tRBRA

= tDBDA
, tDBRA

= tRBDA
� with respect

o t = 0, the amplitudes are not because of the incomplete aperture.
or a complete aperture �additional source to the right of reflector
�, virtual source traces �d� and �e� would be purely symmetric and

dentical to each other.
orehole. We have demonstrated that VSM can accurately redatum
nput data to downhole receiver locations below a shallow hetero-
eneous overburden. After such redatuming, the reflections from
eep target horizons have higher signal-to-noise ratio because they
re not distorted by the complex medium above. That should im-
rove the quality of subsequent data migration. Our derivation in-
olves no restrictions on medium complexity; therefore, VSM can
e used for arbitrarily heterogeneous anisotropic elastic media and
arious acquisition geometries. Numerous conditions strictly
eeded to apply the KHI are not satisfied in practice, so it is un-
ikely that VSM can reconstruct true amplitudes of Green’s func-
ions between subsurface points. Still, considerations above pro-
ide reasonable assurance that VSM can accurately recover phase
esponses needed for high-fidelity imaging. In the presence of a
ull aperture �never attainable in practice�, the theoretical response
s antisymmetric in time. In approximate implementation with
rosscorrelations and limited apertures, the acausal and causal
arts are generally different. However, when the virtual sources are
reated at all receivers, the information contained in causal parts
nd acausal parts is redundant. The actual performance of VSM in
ealistic situations is the subject of the next investigation, which
ill be expanded to elastic models and three-component data.
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